
PROCESSING SATELLITE IMAGERY ON THE INEL CRAY
FOR CROP AREA ESTlMATION*

by
Martin Ozga

National Agricultural statistics Service
United States Department of Agriculture

Fairfax, Virginia
INTRODUCTION

The National Agricultural statistics Service (NASS) of the united
States Department of Agriculture (USDA) has an ongoing program to
use Landsat satellite data to augment crop area estimates in
certain areas of the USA. Since the areas of interest are rather
large, typically major parts of states, a number of scenes are
required to obtain full coverage. For example, we are currently
working in the Mississippi River Delta region of Arkansas,
Louisiana, and Mississippi. A minimum of twelve scenes are
required to cover that area. Also, the time between the receipt
of imagery and the due dates of estimates can be short, requiring
concentrated processing in a relatively short period of time. For
these reasons, this project has long relied on supercomputers to
do our most large-scale processing, starting with the ILLIAC-IV,
an early supercomputer no longer in existance, then using CRAYs at
various locations and currently the INEL CRAY.

NASS METHODOLOGY
NASS has for many years produced crop area estimates. These

.) estimates are produced by first dividing up areas into land use
strata, where the stratification is based on the percentage of
land cultivated. within each stratum and within each state, a
number of areas known as segments are randomly selected. These
segments are visited by enumerators who record the crop and field
size for the various fields in the segments based both on
interviews with the farmers and personal observation. The crop
area estimates are generated using statistical techniques similar
to those used in opinion polls to extrapolate the total from the
sample.
The segment data is a sample of the total land area, while the use
of satellite data allows complete coverage of the area of
interest. Segments may be located within the satellite image once
both the scene and the segment outline are registered to a map
base. A digital satellite image, or scene, is composed of pixels.
Each pixel represents the reflectance in various spectral bands of
an area on the ground. Since the crop types within the fields of
each segment are known, this information can be used to determine
the relationship between pixel values and crop or other land cover
types. The pixel data for known fields of a specific crop or cover
type are gathered and clustered to yield statistics, including

--*presented at the INEL Computing sYmposium, september 21-24, 1992

)

)

I)

)

means and covariance matrices, representing that type. Typically,
several output categories represent one crop due to differences in
growing conditions. statistical information from all crops and
cover types are put into one statistics file per satellite scene
or major analysis district. These statistics files are used to do
maximum likelihood classifications of entire scenes. Multitemporal
scenes are used wherever possible. These scenes are created by
overlaying two different image dates of the same area; usually a
late spring and a summer scene. A multitemporal scene can help to
distinquish crops which are spectrally similar in a single scene.
Unfortunately, the current satellite imagery is not specialized
enough for agriculture and the algorithms for assigning pixels to
crops are not well enough developed to obtain a sufficiently
accurate estimate directly from the scenes by merely counting
pixels. Rather, a regression estimator is used based on the pixel
classification into crops and also on the ground data from the
segments. Estimation is by land use strata. The strata
boundaries are digitized within each county. The digitized
counties are registered to maps and thus overlaid on the scenes in
much the same way as for segments. pixels are counted by category
and strata. This count is referred to as an aggregation. The
aggregation is input to a regression estimator along with the
ground data values from the segments to get the final estimation.

LANDSAT THEMATIC MAPPER DATA
The data we have been processing is Landsat Thematic Mapper (TM).
A TM scene has 5965 rows and 6967 columns for a total of
41,558,165 pixels. Each pixel represents a square of about 30
meters on each side on the ground and consists of seven channels.
Each channel has a value between 0 and 255 so that it occupies one
byte. The channels represent the reflectance in particular
spectral bands. Thus, the entire scene requires 290,097,085 bytes
of data plus some descriptive header information or a little under
300 megabytes. We reformat the data locally from the supplied
format to one expected by our programs. This allows us to
accomodate new formats or other satellites easily by merely
writing a new reformat program. The reformatted data is sent to
INEL on tapes, two 6250-bpi tapes per full scene. In our
processing, we always use all channels. However, in some cases,
the area of interest is only a portion of a scene. In that case,
we extract a portion of a scene before doing processing. This
extraction is done on the CRAY; the full scene is always sent. As
mentioned previously, we sometimes use multitemporal data. A
multitemporal scene is twice as large as a single scene so it
contains just under 600 megabytes of data.

CONNECTIONS BETWEEN NASS AND INEL COMPUTERS
We use batch processing for all of our CRAY jobs. This is done
since our jobs often execute for long periods of time and have
complex control language involving execution of several programs
and interaction between the CRAY, the CYBER, and the IBM

)

mainframe. Also, batch processing, particularly at lower
priorities, is more economical. Since small scale processing is
done on our VAX and PCs networked to the VAX, it is necessary to
have a connection between the NASS VAX and the INEL CRAY.

~ Unfortunately, we are not on any network also used by INEL.
) Therefore, the VAX has been set up as an RJE station to INEL using

the HASP protocol. Since HASP is a protocol most commonly
implemented on IBM mainframes, the RJE connection is really
between the NASS VAX and the INEL IBM mainframe with network
connections at INEL between the IBM mainframe and the CYBER and
the CRAY. HASP assumes three data streams, one for input and two
for output. The input data stream is in SO-character records as a
holdover from the punched card era. The output streams are the
printer stream and the punch stream. The printer stream is used
for printed output and thus may contain records of varying sizes.
The punch stream was originally intended to punch cards but is now
used to transmit binary data in SO-character records. The HASP
connection is on ordinary phone lines at 4S00 baud using modems at
both ends. This connection is used to transmit control language
containing small amounts of character data as well as small binary
files to INEL as well as to receive printouts and small binary
files from INEL. The connection is certainly not fast enough to
handle full or partial scenes of either raw or classified
satellite data, hence the necessity to mail that data on tapes.
In addition, the path for sending the control language to be
submitted to the CRAY is different from the path used to send
binary data. The control language goes to the CYBER and is then
submitted to the CRAY. The binary data goes directly from the IBM
mainframe to the CRAY disk via a network file transfer. Since it
is important that no conversion of the binary data takes place,
the JCL included "with the binary data must be sent in EBCDIC. The
binary data is sent to a single file on the CRAY and then broken
into individual files by a program run on the CRAY. Hence, for
jobs requiring binary input files, two jobs must be submitted, the
CRAY job and the IBM job containing the binary data. The job
containing the binary data is submitted first in the hope that the
binary data will be available on the CRAY disk before it is needed
by the CRAY job. If not, the control language is arranged in such
a way that the CRAY job will terminate immediately. similarly,
once the CRAY job has completed, output binary data is left on the
CRAY. A separate job is then submitted to the IBM mainframe to
retrieve this data and send it down the punch stream of HASP to
the NASS VAX disk.
The control language for a typical NASS CRAY job is rather complex
with several programs being run in one job. Further complexity is
added in having to deal with the CYBER and the IBM mainframe.
Therefore, a program called CRAY has been developed on the NASS
VAX to generate and submit the jobs. This program requires the
user to enter the type of job to be performed and the input files
required. The CRAY program also assembles the binary input data
and creates the control language required to retrieve any output
binary data via the punch stream. The latter job must be

)

submitted separately by the user, however, since it cannot be run
until the CRAY job has completed.

')
with the CYBER soon to be discontinued, our procedures will have
to be changed to accomodate its replacement. This will mean
changes to the CRAY program on the VAX, but should mean minimal
and probably no changes in the user interface for submitting jobs.
From time to time, we have considered trying to replace use of
HASP with a network connection to INEL. Previously, any serious
inve$tigation of a network connection had been delayed due to our
long pending move from washington, DC, to Fairfax, Virginia. Now
that the move has taken place, perhaps we can begin to look at the
benefits and costs of a network connection.

PROGRAMS ON THE CRAY
All of the programs we use on the CRAY are written in FORTRAN with
a diminishing number of assembly language routines. Assembly
language was used largely because of certain inadequacies in early
versions of the CRAY FORTRAN compiler. These inadequacies have
generally been corrected, but we were reluctant to change working
code unless it was necessary to make other changes to the
programs.
The two jobs which we run on the CRAY are classification and
multitemporal file creation. Classification is by far the most
time consuming.
The classification is based on a maximum likelihood procedure in
which each pixel is independently assigned to a category
representing a crop or other ground cover. The algorithm consists
of applying a series of discriminant functions to each pixel and
assigning the pixel to the class for which the discriminant
function yields the highest value. Since the pixels are treated
independently, the algorithm vectorizes very well. However, since
the algorithm involves matrix mUltiplies, the CPU time required to
do a multitemporal scene is about five times that for a single
scene with the same number of categories. The algorithm is
linearly proportional to the number of categories. On the INEL
CRAY, a multitemporal classification with a large number of
categories (on the order of 200) could well take 12 hours of CPU
time. Since recent analyses have used considerably more
categories than previous analyses done on CRAY systems at other
locations, the long CPU time has required us to add a save and
restart capability to the classification program. In fact, the
classification program was completely rewritten, also eliminating
remaining assembly language routines in the process. Fortunately,
before the program was rewritten, we never had a situation in
which the CRAY went down during a long classification.
Interestingly, there is an optimization to the classification
algorithm which may be applied on scalar machines but not on
vector or parallel machines. If the classes are arranged in order

)

based on the constant part of the discriminant function, classes
~ with the constant part below the last value computed need not be
! tested for a pixel. Since, of course, this is not the same for
\ all pixels, such a test would break the vectorization. This
} optimization saves about 50% of the CPU time on a scalar machine.

Nevertheless, the algorithm vectorizes so well that the speedup
using a vector machine is considerably greater.
The classify job generally also contains aggregation and sometimes
read a window or tape write. Agg,egation counts the classified
pixels by category and strata, uS1ng the overlay of the strata
boundaries in the county file onto the scene. Aggregation is not
vectorizable, but is done on the CRAY as a convenience since the
classified file is available and since both the stratified county
file used as input and the aggregated county file are small enough
to be transmitted electronically via the HASP connection. When it
is not necessary to classify the entire scene, the read window job
is used to read the area to be classified, referred to as the
window. Again, this job is not vectorizable but is done on the
CRAY due to availability of the data. However, both aggregation
and read windows run very quickly on the CRAY. Tape write is used
to copy the output classified file to tape for later use locally,
particularly for displays.
Multitemporal file creation is the other job run on the CRAY. The
procedure is to overlay one scene on the other. The multitemporal
scene will have the coordinate system of one of the scenes. That
scene is known as the primary scene. The other scene is known as
the secondary scene. For each primary scene pixel, the closest

'.),.matChing secondary scene pixel is chosen and placed next to the
. primary scene pixel in the final multitemporal scene. Generating

the coordinates of the secondary scene pixel is the purpose of the
multitemporal scene registration. Before using the CRAY, a
preliminary visual registration of the two scenes is done on thepc. This preliminary registration is used to select a grid of
block coordinates for the two scenes, with 64 by 64 blocks for the
primary scene and 32 by 32 blocks for the secondary scene. Then,
all further processing is done on the CRAY. The blocks are read
from the respective scenes, for one channel only and the same
channel for both. A simple gradient function is applied to each
block to make edges more prominent and decrease seasonal
differences. Then, a correlation function is performed between
the 32 by 32 block and each 32 by 32 sub-block of the 64 by 64
block. The position yielding the highest correlation value is the
shift for that block pair. Taking all blocks and eliminating
those with very low correlations or suspicious shifts, least
square polynomials are formed describing the row and column of the
pixel from the secondary scene needed to match each pixel of the
primary scene. These polynomials are applied to each pixel of the
primary scene and the appropriate secondary scene pixel is
selected and placed next to the primary scene pixel to make the
multitemporal scene. The gradient computation, correlation, and
computation of the secondary scene row and column are all
vectorizable and run well on the CRAY.

)

PROBLEMS
\ Generally, use of the INEL CRAY has been quite satisfactory.

) However, there are a few problems. The most annoying of these
. problems is the occasional complete disappearance of a batch job.

This is due to the batch job containing the statements to copy the
output listing to be sent back. If there is some sort of an error
which causes that part of the control language to not be executed,
no output listing is returned. This is in sharp contrast to batch
jobs on mainframes in which a listing is always returned so that
errors may be detected and seems to be caused by the batch
facilities on the CRAY being less than ideal, particularly in not
anticipating that users may want to run jobs through a RJE link.
The other major problem is more local to INEL, namely that not
enough disk is available. A multitemporal TM scene requires about
600 megabytes. Another 50 megabytes is required for the output.
All of this must be available at the same time. On occasion, that
much space is not available in the temporary area, requiring
changes to be edited into the machine 'generatea control language
when space is found on various disks. with these possible disk
problems in mind, we have streamlined our procedures, particularly
in deleting unneeded files as soon as possible, but the problem
still persists.
A lesser problem is that, since three machines are required for a
job, the communication between them can occasionally fail. This
problem may not be detected since some of the linkages which we
use are not used by very many other users. Generally, the only
way to detect such a failure is when no printout is received for a
job after a "reasonable" time.

)

	page1
	titles
	--
)

	images
	image1
	image2

	page2
	titles
)
	I
)
)

	page3
	titles
)
)

	page4
	titles
)

	page5
	titles
)

	page6
	titles
)

